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Abstract:  Developments of signal analysis and wavelet 
transform from the viewpoint of time-frequency analysis 
are surveyed, and the superiorities of wavelet 
transform as applied to signal processing are 
investigated with a focus on the potential applications 
of wavelet transform to radar signal processing, 
especially its application to wideband or ultra- 
wideband radars.  Further, radar ambiguity function 
analysis, signal detection and parameter estimation, 
and recognition of radar targets using wavelet 
transforms are discussed.  Finally, the prospects of 
applications of wavelet transforms to signal processina 
are examined. ^ 
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An FFT can obtain a signal frequency spectrum distribution 

only as a whole, but cannot make a local analysis for a time 

varying and non-equilibrium signal. While the short-time Fourier 

transform (STFT) and Wigner-Ville distribution (WVD) seem to be a 

significant breakthrough in the time-frequency analysis of a 

time-varying signal, yet several superimposed signals may cause 

serious cross term interference [1] and severely affect their 

wide application.  In recent years, however, researchers have 

focused their efforts on a totally new approach, that is the 

wavelet transform which can overcome the above problem.  The 

wavelet transform, refereed to as a "Mathematical Microscope", 

possesses a localization character in both the time domain and 

frequency domain, and it also gradually adopts a fine time domain 

or air domain sampling step length for high-frequency components 
and can focus on any part of a target. 

Wavelet theory can provide a unified framework for multiple 

resolution analysis and time-frequency analysis and is likely to 

have wide applications. Then what are its application prospects 

in radar signal processing? Modern radar technology is 

progressing toward the goal of ultra-wideband (high resolution), 

multifunction and intelligence.  The echo wave signals which a 

radar receives, different from those from a regular point target, 

are synthetic images (one-dimensional, two-dimensional and three- 

dimensional), with multiple scattering centers, of local fine 

features.  Thus, the performance improvement based on the 

conventional FFT technique is quite limited and particularly, the 

regular FFT can by no means analyze the gradually changing pulsed 

echo waves received from wideband signals, such as those from an 

impact radar.  In this case, wavelet transforms have unique 

advantages in analyzing such signals. 

Also, wavelet transforms can execute local feature 

extraction from the one-dimensional image echo wave data received 

by the radar, so as to realize target parameter estimation, 
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detection and identification.  In addition, it can perform image 

processing, compression, coding and matching for the two- 

dimensional and three-dimensional images received and provide an 

effective means for future radar intelligent signal processing. 

On the other hand, the nonlinear signal processing method 

based on the subform and chaos challenges the conventional radar 

clutter statistical processing.  This theory states that the 

radar echo waves, coming from the clutter source of a reflecting 

body with subform features, also have subform features [2-5]. 

With in-depth study and a breakthrough, this theory will surely 

mean a leap in quality in radar signal processing.  While wavelet 

transforms can serve as a means of critical mathematical analysis 

for the practicability of the subform and chaos theory. 

Therefore, combined research on the wavelet transform and radar 

signal processing has tremendous potential and is regarded as a 

completely new area of research. 

1. Wavelet Transform and Radar Signal Processing 

With advances in wideband and ultra-wideband radar 

technology, a target image with a fine (high resolution) 

structure (one-dimensional, two-dimensional or three-dimensional) 

can be derived.  This high-resolution image has more local 

undulation features compared with the conventional point target 

echo waves.  Particularly, the echo wave signals obtained by an 

impact radar or noise radar are transient and also a non-smooth 

process in a broad sense [6-11].  In this case, the wavelet 

transform technique is needed for their analysis to upgrade the 

performance of radar signal processing.  Additionally, D. L. 

Jaggard et al. revealed that surface forms like natural 

landforms, clouds and sea surface are subform targets which can 

be described with the finite form of Weierstrass subform 

function, and that the echo wave signal time series from the 

interaction between those subform targets and electromagnetic 



waves also shows subform features [2-5].  Subsequently, the 

wavelet transform "microscope" technology is also needed in the 

research on the multiple sub-dimensional anomalous indexes and 

distribution function scale indexes of these subform models [10]. 

In the first place the wideband signal must be defined. 

Suppose there is a signal s(t) and its corresponding Fourier 

transform is s(w), then a definition can be derived for two 

bandwidths: 
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and then the wideband signal is defined to meet the following 
condition: 

xmx(Bn, B,)»f0 
(3) 

where f0 is the carrier wave frequency.  The multiple signal that 

can satisfy Eq. (3) can be expressed by the product of the 

complex envelope signal and the modulated part of the carrier 

wave; otherwise, that multiple signal will not have a distinctive 
complex envelope. 

The foregoing conclusion is obvious for a sonar signal; Eq. 

(3) is difficult to meet for radars below the decimeter level. 

Thus, general signals located in the front end of the radar 

receiver can be regarded as narrow-band signals.  Nonetheless, if 

the received radar echo waves have undergone frequency mixing and 

back-level zero midband processing, then the output signals can 

be considered as wideband signals and the related features of the 

echo wave signals should be analyzed in accordance with the 

wideband signal requirements.  Especially, as general signal 



processing is done at the back end, a common wideband radar can 

always meet the condition of Eq. (3).  Figs. 1 and 2, 

respectively, show oscillograms of the wideband signal and 

narrow-band signal. 
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Fig. 1. Narrow-band Signal Fig. 2.  Wideband Signal 

The wavelet transform serves as a significant mathematical 

tool for the multiple resolution analysis of abruptly changing 

signals and non-smooth signals.  With its unique features, the 

wavelet transform, while applied to signal processing, shows the 

following advantages: 

a. Since the wavelet transform is a linear transform, the 

features of the transformed signal are not distorted.  It is 

particularly good for the non-smooth transient signals in that it 

can clearly single out the abruptly changing signals. 

b. The wavelet transform can perform local analysis of 

signals in both the time domain and the frequency domain.  In 

this way, a local detector is likely to arrive at a better result 

with lighter computational load. 

c. The wavelet transform is mainly designed for use in processing 

the wideband (large product of time width by bandwidth) signals, 



because the latter requires a high resolution rate in the time 

domain, while STFT is superior only when applied to narrow-band 

signal processing. 

d. The wavelet transform, when used for analysis of local 

fineness, can accomplish a finer analysis of a short-time (finite 

data) signal.  In other words, it is advantageous in short-time 

data analysis. 

As the wavelet function is tightly supported while the 

Fourier base is not, the wavelet transform of normal white noise 

is still normal white noise, while the Fourier transform of 

normal white noise is not, which appears to be a very important 

feature of the signal analysis with the wavelet transform. 

1.1 Wavelet Transform and Ambiguity Function 

1.1.1 Definition of Narrow-band Signal Ambiguity Function 

z(*. 0= 
(4) 

u(r)u*(t+T)exp(j2ji<Jt)dt 

where u(t) is the complex modulated envelope that is outputted by 

a signal through a matching filter, which is virtually a 

reciprocity function of target signal u(t) and target signal 

u*(f+T)exp(j27i£t) (u(0  after time delay T and Doppler shift £). 

It is to be noted that in the case of a narrow-band signal, WVD 

is in a two-dimensional Fourier transform relation with the 

ambiguity function X(T/C) [l]r i.e. 

(5) 

J*wv(t. »)= Z(T, C)exp[j(Ct-<uT)]dTdC 

1.1.2  Definition of Wideband Signal Ambiguity Function 



Based on the above analysis, for a wideband signal, the 

expression of the u(t) echo wave signal form through the Doppler 

shift is 

u(p(t-x,)), where p is the time extension factor.  Thus, the 

ambiguity function at that time can be defined as [17-19]: 

X(*, P)=\   u(t)u*(p(t-x))dt (6) 

p=(c±v)/(c^v) 
(7) 

where c and v, respectively, are the speed of light and the 

target velocity relative to the radar;  p >1 in forward motion 

and p<l in relative motion. 

It can be seen from Eq. (6) that the self-ambiguity function 

of the wideband signal has a form similar to the wavelet 

transform.  The difference is that the ambiguity function 

requires the wavelet function to be the transformed signal 

itself, while in the wavelet transform, the transform (wavelet) 

function is different from the transformed function.  In this 

sense, the wavelet transform can also be referred to as the 

wideband reciprocity function.  Therefore, the wavelet transform 

theory can be used to analyze the self-ambiguity function and the 

reciprocity function of the signal and further provide support 

for the radar waveform design. 

1.2 Application of Wavelet Transform to Signal Detection and 
Parameter Estimation 

1.2.1 Signal Detection Based on Wavelets 

Suppose the received signal is expressed in the following 

two forms [20]s 

H,: *(0=*(0+c(0+ »(0 ;    H0: x(t)=c(t)+n (t) {8) 

where x(t), s(t), c(t) and n(t) respectively are the received 

echo wave signal, the signal to be detected, the clutter and the 



system thermal noise in L-dimensional space. 

Suppose the vector c(t) can be simulated as a zero mean 

value, the covariance matrix is Gaussian distribution process of 

Rc, while s(t), c(t) and n(t) are assumed to be mutually- 

independent, then the corresponding plausibility ratio will be 
[20]: 

L(x)=xr(t)(R;l-(Rd+Riyi)x*{t) (9) 

where   R^RC+I;     T is a transposed vector; * is complex 

conjugate.  When the clutter spectrum is very wide, i.e. Rd=o\l 
the corresponding plausibility ratio will become: 

L(x)=xr(t)s*Hi{t)H>D (10) 

where   ^(0,-£{K0/i(0, *,}. £{•}     is the selected statistic 

mean value, D is the detection threshold. 

This is the conventional signal detection method.  In fact, 

it is possible to transform these data, with the wavelet 

transform method, into the two-dimensional time-frequency phase 

space domain to be analyzed.  By expanding Eq. (8) in accordance 

with the discrete wavelet base, the following can be derived: 

#.--*;.*(0=s;.4(0+c,,t(0 + n,,t(0 ; H0:xJik(t)=chk(t)+nj,k(t) (11) 

Due to the property of the wavelet, Eq. (10) can be changed to 
[20]: 

L(x)=-J-2-'II<*(0, Wx(j,k)>-<sHi(t), Wx(j.k)> (12) 

where cw is the constant term which constrains the wavelet from 

satisfying the permitted condition. 



Then, how do we select factors j and k? Assume the range of 

the wavelet transform used is -J<j<J, -K<k<K, then a block method 

can be used in response to the features of the wavelet transform. 

1.2.2 Parameter Estimation Based on Wavelets 

First, a definition should be given to the time-scale energy 

distribution function 

then, the "average scale factor " at each moment is 

J=lM/.*)/I»K/,*) 

the"average translated factor" of each scale is 

(13) 

(14) 

(15) 

As a result, Eqs. (14) and (15) can be used to estimate the 

Doppler frequency and Doppler rate of radar signals like FMCW. 

1.3 Wavelet Transform and Target Identification 

When a radar is identifying a target, it has to single out 

those echo wave data of the identified target that can reflect 

the essential features of the target, namely: (1) the monotypical 

target pattern stays relatively stable and (2) different types of 

target patterns stay remarkably different.  Only these features 

are favorable for identification.  The data domain on which a 

radar is based in target identification involves the time (air) 

domain, the frequency domain, the polarization domain, etc.  Here 

the frequency domain basically refers to the Fourier domain, 

which can eliminate the translational component of the target 

relative to the radar (reflected on the phase of the Fourier 

domain) after the data are modelled and have realized the 

translational invariance.  However, the Fourier transform is a 



frequency spectrum analysis that takes the time domain data as a 

whole without any response to the local information of the target 

echo wave data, which is due to the non-local analysis character 

of the Fourier transform.  Yet the local information of the 

target is virtually an extremely important feature in target 

identification because it reflects the essential difference among 

different targets.  It is thereby necessary to extract this local 

characteristic information of different targets by using the 

wavelet transform as a "mathematical microscope" so as to improve 

the identification performance of the radar. 

2. Prospects of Wavelet Transform and Signal Processing 

The wavelet transform has wide application prospects in 

high-resolution and ultra-wideband radars (impact radar, noise 

radar and pulse compression radar) because the signal echo waves 

from these radars possess high-resolution local features, and can 

reflect the fine structure of the target or generate the one- 

dimensional, two-dimensional and three-dimensional images of the 

target.  Once the wavelet transform theory is combined with the 

ultra-wideband radar technology, it will eventually transform the 

difficult situations in future intelligent target identification 

and detection and bring new vitality to radar technology. 

Nevertheless, the wavelet transform theory is by no means 

limited to radar signal processing alone.  It is also a 

significant mathematical tool in nonlinear signal processing 

including neural net, subform, etc.  Such an organic combination 

will formulate the core of modern nonlinear intelligent signal 

processing.  In short, the wavelet transform—the mathematical 

"microscope" technology—should include at least the following 

areas of signal processing [21-25]: 

(1) Anomalous signal detection; (2) speech signal processing; (3) 

seismic prospecting signal processing; (4) image processing; (5) 

data compression and subcoding; (6) multiple subdimensional 
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features and scale analysis of subform and random signals; (7) 

self-adaptive filtering and array signal processing; (8) clutter 

analysis and radar low-elevation tracking; (9) system 

identification and spectrum estimation and (10) model separation 
and group velocity determination. 

In addition, in the research on the wavelet transform 

theory, even more interesting is how to select the basic wavelet 

function with some particular features so that the wavelet 

transform can describe the function features to be transformed 

more conveniently.  The key problem in the wavelet transform 

theory is how to construct such a wavelet function that can meet 

the local time-frequency features in solving practical problems. 

In this case, the difficulty is how to formulate a wavelet 

function that is interfacing with the object, which appears to be 

an urgent knotty problem that mathematicians and engineering 
experts are confronting. 
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